
BRDF Fitting Using Inverse Global Illumination
and Stochastic Optimization*

Gustavo Pfeiffer, Ricardo Marroquim
Laboratório de Computação Gráfica (LCG) – COPPE – UFRJ

Abstract—We present a comprehensive method for recovering
bidirectional reflectance distribution functions (BRDFs) of objects
with known geometry from photographs. Most existing image-
based methods consider only direct illumination, a simplification
which might be inappropriate for highly specular objects or ob-
jects with significant non-convex geometric features. Meanwhile,
algorithms that consider indirect illumination often use iterative
methods that alternate between solving an approximation of the
problem and a series of “black-box” optimizations. We present a
different approach that considers indirect illumination and uses
derivative-based optimization. Our method uses stochastic ray
tracing to compare photographs and renderings, thus leading to
a stochastic objective function, i.e., an objective function that
cannot be measured precisely. We present an unbiased estimator
for the derivative of the ray-traced images with respect to the
BRDF parameters and stochastic optimization techniques for
properly solving the proposed optimization problem.

Keywords-BRDF fitting; inverse global illumination; stochastic
optimization; stochastic ray tracing

I. INTRODUCTION AND RELATED WORK

At present, bidirectional reflectance distribution functions
(BRDFs) provide us the most complete model of light re-
flection at a macroscopic observation level. They describe
the visual appearance of a surface point by modeling how
light interacts with it (or roughly speaking, they describe
the material from which the surface is made), and can be
conveniently measured from an actual object. However, since
BRDFs are four-dimensional functions, thorough measurement
can be extremely laborious. It is often preferred to fit the
BRDF to a parametric equation, which may derive from a
physically-based model (such as the Oren-Nayar model [1]
or the He-Torrance model [2]), from a mathematical model
designed for fitting (such as Lafortune’s model [3]), or even
from a linear combination of several measured BRDFs [4].

Image-based BRDF fitting is an efficient way of measuring a
BRDF, since a few photographs often provide sufficient data
for an accurate fit. Several techniques have been presented,
including the ones by Marschner et al. [5], Lensch et al. [6],
and Sato et al. [7] [8]. Standardly, methods suppose we already
know the geometry (often acquired from 3D scanner data), the
camera position and rotation (which may be recovered aligning
photograph silhouettes [9]) and the light source position (by
for instance analyzing specular highlight [6]).

However, a deficiency of the methods above is that they
only consider direct illumination. This significantly simplifies
the optimization method, but may fail in cases where this
simplification is not appropriate — for instance, when the

geometry of the object causes interreflection spots, specially
when the surface is mostly specular, or when a physical setup
for isolating surrounding surfaces was not properly done or is
not even possible. We present therefore a BRDF fitting method
that takes into account global illumination (i.e., considers
multiple reflections). Stochastic ray tracing is used to evaluate
the objective function, which consequently turns the objective
function stochastic, characterizing one of the major challenges
of the proposed method.

Our method solves the Inverse Global Illumination problem,
which has been solved by [10] [11] [12], among others.
Approaches for this problem however are limited to specific
BRDFs and often resort to iterative algorithms that alternate
between solving an approximated model and a series of
“black-box” optimizations. On the other hand, as we developed
a dedicated ray tracer that computes the rendered image and its
Jacobian matrix with respect to the unknown parameters, we
can use a more comprehensive, derivative-based optimization
approach.

Our main contributions are:
• A comprehensive method for fitting BRDFs, taking into

account mutual illumination. In addition, it can be used
to fit emission distribution functions of light sources, and
it also solves the inverse global illumination problem.

• A few optimization strategies that, although designed for
this problem, are generic enough to be applied to other
nonlinear least-squares stochastic problems.

II. INITIAL MATHEMATICAL FORMULATION AND
NOTATION

Our problem consists in finding the BRDF parameters
that characterize the surface of the object, given a set of
photographs of an object, the position and rotation of the
camera in each photograph (i.e., its extrinsic and intrinsic
matrices; distortions are disregarded), the position of all light
sources, and the geometry of the object.

We model it as a nonlinear least squares problem that
compares each photograph with a rendering of the scene. We
would like to find p that minimizes the following objective
function:

f(p) =
1

2
||R∗(p)− R̄∗||2 =

1

2

∥∥∥∥∥∥
 R1(p)

...
RNφ(p)

−
 R̄1

...
R̄Nφ

∥∥∥∥∥∥
2

where:

* This document is a revised version of the manuscript formerly sumbitted to SIBGRAPI-WUW 2012.

• p ∈ RNp is a vector of the Np parameters we want to
obtain, usually the BRDF parameters. It may also include,
for instance, light source intensity and albedo textures.

• Nφ is the number of photographs multiplied by 3 (suppos-
ing 3 color channels, i.e., RGB). We render each channel
separately, as if they were different images, so, for
convenience, we will often use the terms “photograph”
and “image” to refer to only one channel.

• Ri(p) ∈ RNi,x×Ni,y is the image correspondent to a
perfect rendering (without noise) of the scene for param-
eters p, where Ni,x and Ni,y are the dimensions of the
photograph i.

• R̄i is the i-th photograph (target image).
• The notation R∗ indicates a concatenation of the Ri.
In the following sections this objective function will suffer

modifications due to optimization techniques, but as of now
we keep this simplified formulation.

The renderings Ri(p) cannot be computed exactly, algo-
rithms such as stochastic ray tracing compute otherwise unbi-
ased estimates R̂i of Ri(p), i.e., that satisfy E[R̂i|p] = Ri(p).

For simplicity, we use the ̂ notation to indicate that a
random variable is generated given another random variable.
We write F̂ (x) when E[F̂ |x] = F (x) for a given function
F (x). Note that F̂ (x) is not a function, it merely represents
this relationship between random variables F̂ and x. Also,
we use the symbol ′, as in F̂ (x) and F̂ ′(x) to indicate
when two measurements are independent, i.e., pdf[F̂ , F̂ ′|x] =
pdf[F̂ |x]pdf[F̂ ′|x].

In order to choose a search direction in the parameter space,
we use a derivative-based method, thus we need to be able
to compute an unbiased estimator ∂̂pRi(p) of the Jacobian
∂pRi(p). Note that ∂̂pRi(p) is not the derivative of R̂i(p),
since R̂i(p) is not a function of p, but E

[
∂̂pRi

∣∣∣ p] = ∂pRi(p).
In the next section we show how this derivative can be
estimated.

III. THE RAY TRACER DERIVATIVE

A. Mathematical model of the path tracer

For the ray tracer, we use a path tracer with next event
estimation (following the terminology from [13]), i.e., rays
are traced from the eye to the light, and direct illumination is
computed separately from indirect illumination. A pixel R̂i,x,y
of image i in coordinates (x, y) can be written as

R̂i,x,y =
1

Nsamples

Nsamples∑
j=1

R̂i,x,y,j

where R̂i,x,y,j is a sample.
From Kajiya’s rendering equation [14], a point x of a

surface satisfies:

Lout(x, ωout, p) = Le(x, ωout, p)+∫
Ω

fr(x, ωin, ωout, p)〈ωin, n̂〉Lin(x, ωin, p)dωin

where fr is the BRDF, p are the BRDF parameters, n̂ is
the normal vector at x, Lin and Lout are the radiance functions
entering and exiting the surface point from directions ωin and
ωout, Le is the emitted radiance, and Ω is the hemisphere of
entering directions.

We separate the direct and indirect illumination components:

Lout(x, ωout, p) = Le(x, ωout, p)+∫
Ω

fr(x, ωin, ωout, p)〈ωin, n̂〉Ldirect(x, ωin, p)dωin

+

∫
Ω

fr(x, ωin, ωout, p)〈ωin, n̂〉Lindirect(x, ωin, p)dωin

where Ldirect anticipates the value of Le coming directly from a
light source, while Lindirect refers to light that has been reflected
by at least one surface before reaching x.

Using the Monte Carlo integration technique, an unbiased
estimator ŷ for a function y(p) =

∫
z(x, p)dx can be generated

as follows:

E[ŷ|p] = y(p) =

∫
z(x, p)dx =

∫
z(x, p)

pdf[x|p]
pdf[x|p]dx

= E

[
z(x, p)

pdf[x|p]

∣∣∣∣ p] (1)

ŷ(p) :=
z(x, p)

pdf[x|p]
(2)

where pdf[x|p] can be conveniently chosen and must be non-
zero where z 6= 0.

Thus, we compute R̂i,x,y,j recursively, using:

R̂i,x,y,j = Le(x, ωout, p) + R̂i,x,y,j,0

R̂i,x,y,j,k = si,x,y,j,kÊi,x,y,j,k + r̂i,x,y,j,kR̂i,x,y,j,k+1

where

s = fr(x, ωdirect, ωout, p)〈ωdirect, n̂〉

Ê =
Ldirect(x, ωdirect, p)

pdf[ωdirect|p]

r̂ =
fr(x, ωindirect, ωout, p)〈ωindirect, n̂〉

pdf[ωindirect|p]

We remark that Ê is sampled in the light source position
domain (pdf[xlight]), and not in the hemisphere of reflection
(pdf[ωdirect]), yielding (in case of area light sources):

Ê =
max{〈−ωdirect, n̂light〉, 0} · Llight(xlight,−ωdirect, p)

pdf[xlight|p] · ||xlight − x||2

where ωdirect =
xlight − x
||xlight − x||

Also, in case the ray does not hit any surface, we set
R̂i,x,y,j,k = 0, which ends the recursion. Similarly, Ê is set to
zero if there is another surface blocking the light in direction
ωdirect.

B. Derivative of the path tracing recursion

The derivative of the path tracing recursion may be com-
puted recursively using:

∂̂pRi,x,y =

Nsamples∑
j=1

∂̂pRi,x,y,j
Nsamples

∂̂pRi,x,y,j = ∂̂pLe(x, ωout, p) + ∂̂pRi,x,y,j,0

∂̂pRi,x,y,j,k = ∂psi,x,y,j,kÊi,x,y,j,k + si,x,y,j,k∂̂pEi,x,y,j,k

+∂̂pri,x,y,j,kR̂i,x,y,j,k+1 + r̂i,x,y,j,k∂̂pRi,x,y,j,k+1

or ∂̂pRi,x,y,j,k = 0 if the ray does not hit any surface

In order to avoid summing up and stacking gradient vectors
such as ∂̂pRi,x,y,j,k and ∂̂pri,x,y,j,k, it is preferrable to com-
pute ∂̂pRi,x,y incrementally, by starting with ∂̂pRi,x,y = 0 and
summing the terms separately:

qi,x,y,j,0 =
1

Nsamples

qi,x,y,j,k+1 = r̂i,x,y,j,kqi,x,y,j,k

∂̂pRi,x,y += qi,x,y,j,0∂̂pLe(x, ωout, p)

∂̂pRi,x,y += qi,x,y,j,kÊi,x,y,j,k∂̂psi,x,y,j,k

∂̂pRi,x,y += qi,x,y,j,ksi,x,y,j,k∂̂pEi,x,y,j,k

∂̂pRi,x,y += qi,x,y,j,kRi,x,y,j,k+1∂̂pri,x,y,j,k (3)

where the notation A += B should be read as A← A+B.
In addition, since eq. 3 requires knowing the value of

R̂i,x,y,j,k+1, this parcel is only summed when returning from
the recursion.

C. Derivative of s, r, and E

The derivative of s is straightforward:

∂ps = 〈ωdirect, n̂〉∂pfr(x, ωdirect, ωout, p)

On the other hand, r has the particularity that the pdf of
ωin may change with p, so we have to review the Monte Carlo
integration.

Using the same technique shown in Equations 1 and 2 to
generate an estimator ŷ of a function y(p), we can compute
an unbiased estimator for its partial derivative ∂py as follows:

E[∂̂py|p] = ∂py(p) =

∫
∂pz(x, p)dx =∫

∂pz(x, p)

pdf[x|p]
pdf[x|p]dx = E

[
∂pz(x, p)

pdf[x|p]

∣∣∣∣ p]
∂̂py :=

∂pz(x, p)

pdf[x|p]

We use the same pdf for solving the direct problem R̂∗(p)

and the derivative ∂̂pR∗(p), though this is arguable, since
probably the most adequate pdf for sampling a function is
not the same as for sampling its derivative.

Now we can calculate the r term derivative:

∂̂pr =
〈ωindirect, n̂〉∂pfr(x, ωindirect, ωout, p)

pdf[ωindirect|p]

The derivative of Ê follows the same principle, though the
pdf does not usually change with p, since uniform distribution
is often used:

∂̂pE =
max{〈−ωdirect, n̂light〉, 0} · ∂pLlight(xlight,−ωdirect, p)

pdf[xlight|p] · ||xlight − x||2

IV. OPTIMIZATION

A. Choice of direction

In the deterministic approach, one could use the Gauss-
Newton method, which chooses a search direction that mini-
mizes:

min
δp
||R∗(p) + ∂pR∗(p)δp− R̄∗||2

resulting in

δp = (∂pR∗(p)
T∂pR∗(p))

−1∂pR∗(p)
T (R̄∗ −R∗(p))

In the stochastic setting, a similar method can be applied:

δ̂p = (∂̂pR∗
′′(p)T ∂̂pR∗

′′(p))−1∂̂pR∗
′(p)T (R̄∗ − R̂∗(p)) (4)

where R̂∗(p), ∂̂pR∗′(p) and ∂̂pR∗
′′(p) are independent mea-

surements. This choice is a biased estimate of δp from the
Gauss-Newton method since:

E
[
δ̂p
∣∣∣ p]

= E

[(
∂̂pR∗

T ∂̂pR∗

)−1
∣∣∣∣ p]E [∂̂pR∗∣∣∣ p]T E [R̄∗ − R̂∗∣∣∣ p]

= E

[(
∂̂pR∗

T ∂̂pR∗

)−1
∣∣∣∣ p] ∂pR∗(p)T (R̄∗ −R∗(p))

However, since

E
[
∂̂pR∗

T ∂̂pR∗

∣∣∣ p] =∂pR∗(p)
T∂pR∗(p)

+
∑
i,x,y

Var
[
∂̂pRi,x,y

∣∣∣ p]
we can expect that the variance term should have a regularizing
effect, yielding a more cautious step E[δ̂p|p] than the one
provided by the Gauss-Newton method (δp). Naturally, this is
only valid under a number of hypothesis, including the fact that
the number of pixels must be much greater than the number
of parameters, and that ∂̂pR∗(p)T ∂̂pR∗(p) is invertible.

Nevertheless, we follow the often called Gauss-Newton-
Krylov approach, which solves the system of eq. 4 only
approximately, using a Krylov-space method such as linear
conjugate gradients up to k iterations. Theoretically, this yields
a solution that minimizes:

min
x∈{b,Ab,A2b,...,Ak−1b}

(x− x∗)TA(x− x∗)

where

Ax∗ = b

b = ∂̂pR∗
′(p)T (R̄∗ − R̂∗(p))

A = B̂′′(p) = ∂̂pR∗
′′(p)T ∂̂pR∗

′′(p)

x = δ̂p

The value of k is controlled by a simple heuristic in which
it starts at 1, increases gradually and decreases in case of step
rejection (see Section IV-C).

We would also like to emphasize the importance of solving
B̂′′(p)−1∂̂pR∗

′(p)T (R̄∗−R̂∗(p)) instead of other alternatives.
For instance, if we use the same measurement for R̂∗, ∂̂pR∗

and B̂(p), i.e., solving instead B̂(p)−1∂̂pR∗(p)
T (R̄∗−R̂∗(p)),

the direction generated will be severely biased toward decreas-
ing variance, which is unwanted, since our ideal objective
function uses only the expected values of the renderings.
Effects of this alternative include decreasing the albedo of the
objects in the scene in order to diminish the contribution of
indirect illumination in the scene, as it is a significant source
of variance in the rendered images.

On the other hand, if we use different measurements of
B̂ in different iterations of the linear conjugate gradient
method, we verified experimentally that convergence slows
down drastically (in terms of the number of iterations).

B. Constraints

We use the barrier method from optimization in order to
constrain variables (many BRDF parameters are constrained
with pk > 0 or 0 < pk < 1). Thus, we use p := p(h), and
apply the Gauss-Newton-Krylov process to h, which means
solving:

δ̂h =
(
∂̂hR∗

′′(h)T ∂̂hR∗
′′(h)

)−1

∂̂hR∗
′(h)T (R̄∗ − R̂∗(h))

where we use the abuse of notation R∗(h) = R∗(p(h)) and
∂hR∗(h) = ∂pR∗(p(h))∂hp. Generally, we use hk = log(pk)
for strictly positive variables and hk = log(− log(pk)) for
variables between 0 and 1.

However, as we are using the Gauss-Newton-Krylov
method, this technique is also useful to induce the optimizer to
favor a certain direction. For instance, we use hk = log(pk)/3
for the light intensity, where the factor 1/3 was chosen
experimentally. As a result, the gradient ∇f is intensified
in the light direction, which, by its turn, is modified more
frequently than, for instance, the albedo of the objects. This is
desirable because changing the albedo before adjusting light
intensity may drag the optimization process to a local minima
or to a point which is hard to recover from.

C. Step acceptance

Some sort of line search or trust region strategy is essential
to nonlinear optimization problems to avoid that the optimizer
takes an excessive step and diverges. In the stochastic setting,
this is more significant since a bad measurement may lead
to a mistaken search direction. However, standard line search

methods are prohibitive in stochastic optimization, since they
become severely unstable. An otherwise more stable approach
of line search would be to fit an approximation of the objective
function in the line and minimize the fitted function; however,
its stability comes from the supposition that a sufficiently large
number of samples is given, which is costly.

We use instead a very simple heuristic of accepting the
step or retroceding. We unbiasedly estimate f(p(h)) using two
independent measurements:

f̂(h) =
1

2
〈R̂∗(h)− R̄∗, R̂′∗(h)− R̄∗〉

Let ht be the value of h in the t-th iteration, and ht+1 =
ht+ δ̂ht. If f̂(ht+1) ∈ [1

10 f̂(ht),
3
2 f̂(ht)], the step is accepted

and h ← ht+1. Otherwise, we retrocede h ← ht−1. If h
retrocedes twice or a previous value of h is not available, we
refine resolution (see Section IV-D). If resolution is already
maximum, optimization stops.

The explanation for this heuristic is as follows. A step can
be considered “bad” in mainly two situations: when the step
δ̂ht is an outlier or when f̂(ht+1) is an outlier much below
f(ht+1). The first case yields f̂(ht+1) >> f̂(ht) and may be
solved by retrying measuring δ̂ht. The second case, however,
would make ht+1 be accepted and ht+2 be rejected with very
high probability, which would be more efficiently solved by
retroceding to ht. We could combine retrying measuring δ̂h a
few times and then retrocede h, however, as the second case is
much more frequent than the first, we verified experimentally
that not retrying measuring δ̂h is more efficient.

D. Refining resolution

Refining resolution means doubling the width and height
of rendered images, and keeping the samples-per-pixel ratio.
For performance issues, we do not start optimization at full
resolution, but in fact at a very low resolution (See Figure 1).
The target images are shrunk to the same size of the rendered
resolution, and the objective function is changed to work
with the number of pixels defined. This strategy reduces the
variance of f̂(h)/Npixels (where Npixels =

∑Nφ
i=1Ni,xNi,y),

which helps the step acceptance algorithm get better results.
It does not change the bias of B̂(p)/Npixels, although it
diminishes its variance, which has a regularizing effect, as
explained in Section IV-A. It also diminishes the variance of
∂̂pR

′
∗(p)

T
(
R̂∗(p)− R̄∗

)
/Npixels.

V. PHOTOGRAPH SETUP

In order to avoid interference from external light sources, we
take two pictures from the same viewpoint with our controlled
light turned on and off and subtract them pixelwise. This is
valid since the rendering problem is linear with respect to light
intensity, though we have to turn off the Gamma filtering from
photographs.

Additionally, in the photograph with the light on, we mark
saturated pixels (with intensity above 250 out of 255), generat-
ing what we call the specular mask (see Figure 2). We do this

(a) At start of optimiza-
tion (0s)

(b) Refined once (45s). (c) Refined twice
(2min35s).

(d) Refined three times
(18min50s).

(e) Refined four times
(1h2min).

(f) Refined four times
(5h30min).

Fig. 1. Optimization progress and resolution refining. Each subimage shows the rendering on top, the target image in the center and the difference in the
bottom. Most noise is due to inefficiency in computing caustics.

to avoid, in specular highlight regions, that the rendered pixel
is compared to a much lower value than it should be. We adapt
our objective function to f(h) = ||g(R∗(h)) − R̄∗||2, where
g(R̂i,x,y) = max{R̂i,x,y, R̄i,x,y} if (i, x, y) is marked in the
specular mask or R̂i,x,y otherwise. This however introduces
bias to all estimators (rendering, objective function and its
gradient), which is not reduced when refining resolution.

We also use a custom mask, where pixels selected by the
user can be removed from optimization (see Figure 2).

(a) Photograph with
light source turned off

(b) Photograph with
light source turned on

(c) Difference between
the two and masks
used. Custom mask is
in black, specular mask
in red.

Fig. 2. Photograph setup example.

VI. INITIAL GUESS

The initial guess p0 for the optimization must be a somewhat
balanced vector, for example, giving BRDFs the same weight
for diffuse and specular components. Most variables such as
albedo and Fresnel coefficients are started at 0.5, and light
intensity is initially at a value that generates gray images
(see Figure 1). The Gauss-Newton-Krylov approach helps
the optimizer change first the directions that have a great
contribution to the objective function. Thus, it first focuses
on parameters such as light intensity and albedo, then on the
weight of each BRDF in the linear combination of BRDFs
used, and finally on more subtle parameters such as roughness
and lobe position.

VII. RESULTS

We applied our algorithm first to a synthetic case (Figure 3)
then to a real object (Figure 4). In the synthetic case, geometry
was exact and the object was mostly diffuse, yielding good
results. Our real case, however, had its geometry measured
manually and was highly specular. Misalignment of the ge-
ometry and light position caused the ghost caustic effect seen
in the figure. In spite of the difficulties, results were better than
the ones obtained when considering only direct illumination
and deterministic rendering: From Figure 4, we note that the
deterministic approach cannot distinguish the strong specular
component of the material. We remark that the quality of the
results was determined only by visual inspection.

VIII. LIMITATIONS, CONCLUSIONS AND FUTURE WORK

The most notable limitation of the method is optimization
time, since resolution or sampling must be refined in order
to obtain more precise results. We have made efforts in order
to increase the performance of our ray tracer, including using
an octree-like data structure in OpenCL code for testing ray-
surface intersections, but the cost is still unsatisfactory. How-
ever, we believe that if better rendering algorithms, sampling
strategies and optimization preconditioning are chosen, this
approach can potentially outperform other existent solutions
to the inverse global illumination problem.

The fact that one cannot use a “black-box” ray tracer
(since derivatives must be computed) can also be considered
a limitation.

We observed that bad sampling conditions may make the
stochastic optimization techniques used misbehave. For this
reason, we consider, as future work, applying this method
to bidirectional path tracing [13] or metropolis light trans-
port [15]. Another important issue that we did not study is how
to make a good sampling of the Jacobian, i.e., how to choose
pdfs for derivatives of BRDFs, as mentioned in Section III-C.

Line search / trust region / step acceptance is still a diffi-
culty and we would like to experiment other algorithms. We

(a) Result obtained fitting the
same BRDF models as the ones
used to render the target image.

(b) Result obtained using fitting
3 Lafortune lobes for the diffuse
component instead of Oren-Nayar.

Fig. 3. Results obtained from a synthetic scene. Target image was generated
using a linear combination of Cook-Torrance and Oren-Nayar BRDF models.
Each subimage shows the rendering on top, the target image in the center and
the difference in the bottom.

also consider changing the Gauss-Newton-Krylov approach to
Levenberg-Marquardt or Quasi-Newton.

We would also like to experiment fitting albedo textures for
spatially-varying materials.

REFERENCES

[1] M. Oren and S. Nayar, “Generalization of Lambert’s Reflectance
Model,” in SIGGRAPH’94, Jul 1994, pp. 239–246.

[2] X. D. He, K. E. Torrance, F. X. Sillion, and D. P. Greenberg, “A
comprehensive physical model for light reflection,” in Proceedings of
the 18th annual conference on Computer graphics and interactive
techniques, ser. SIGGRAPH’91. New York, NY, USA: ACM, 1991,
pp. 175–186. [Online]. Available: http://doi.acm.org/10.1145/122718.
122738

[3] E. P. F. Lafortune, S. choong Foo, K. E. Torrance, and D. P. Greenberg,
“Non-linear approximation of reflectance functions,” 1997.

[4] W. Matusik, H. Pfister, M. Brand, and L. McMillan, “A data-driven
reflectance model,” ACM TRANSACTIONS ON GRAPHICS, vol. 22, pp.
759–769, 2003.

[5] S. R. Marschner, S. H. Westin, E. P. F. Lafortune, K. E. Torrance,
and D. P. Greenberg, “Image-based brdf measurement including human
skin.”

[6] H. P. A. Lensch, J. Kautz, M. Goesele, W. Heidrich, and H. peter
Seidel, “Image-based reconstruction of spatially varying materials,” in
In Proceedings of the 12th Eurographics Workshop on Rendering, 2001,
pp. 104–115.

[7] Y. Sato and K. Ikeuchi, “Reflectance analysis for 3d computer graphics
model generation,” in Graphical Models and Image Processing, 1996,
pp. 437–451.

[8] Y. Sato, M. D. Wheeler, and K. Ikeuchi, “Object shape and reflectance
modeling from observation,” 1997.

[9] R. Marroquim, G. Pfeiffer, F. Carvalho, and A. A. F. Oliveira, “Texturing
3d models with low geometric features.” in SIBGRAPI, 2011, pp. 1–8.

(a) Result obtained using stochas-
tic ray tracing (optimization time:
about 26 hours). Most of the com-
putation time is for computing
caustics properly, since our ray
tracer is not optimized for that.

(b) Result obtained using only di-
rect illumination and determinis-
tic rendering (optimization time:
about 10 minutes)

(c) Surrounding surfaces model used. (d) The object rendered from another
angle and other lighting conditions.

Fig. 4. Results obtained from a real object. The BRDF model used was
a linear combination of 3 Lafortune lobes, 2 Cook-Torrance lobes, and 1
Lambertian lobe for the metal piece and the table, and 1 Lambertian lobe for
the surroundings.

[10] Y. Yu, P. Debevec, J. Malik, and T. Hawkins, “Inverse global illumina-
tion: Recovering reflectance models of real scenes from photographs,”
in SIGGRAPH’99, 1999, pp. 215–224.

[11] S. Gibson, T. Howard, and R. Hubbold, “Flexible image-based photo-
metric reconstruction using virtual light sources,” Computer Graphics
Forum, vol. 20, pp. 1067–7055, 2001.

[12] S. Boivin and A. Gagalowicz, “Image-based rendering of diffuse,
specular and glossy surfaces from a single image,” 2001.

[13] E. Lafortune, “Mathematical models and monte carlo algorithms for
physically based rendering,” Katholieke Universiteit Leuven, Tech. Rep.,
1996.

[14] J. T. Kajiya, “The rendering equation,” in Computer Graphics, 1986,
pp. 143–150.

[15] E. Veach and L. J. Guibas, “Metropolis light transport,” in SIG-
GRAPH’97. Addison Wesley, 1997, pp. 65–76.

http://doi.acm.org/10.1145/122718.122738
http://doi.acm.org/10.1145/122718.122738

	Introduction and related work
	Initial mathematical formulation and notation
	The ray tracer derivative
	Mathematical model of the path tracer
	Derivative of the path tracing recursion
	Derivative of s, r, and E

	Optimization
	Choice of direction
	Constraints
	Step acceptance
	Refining resolution

	Photograph setup
	Initial guess
	Results
	Limitations, conclusions and future work
	References

