BRDF Fitting using Inverse Global Illumination and Stochastic Optimization laboratório de computação

Gustavo Pfeiffer, Ricardo Marroquim Laboratório de Computação Gráfica (LCG) - COPPE - UFRJ

Objective

August 22-25, Ouro Preto, Brazil

• Find BRDF parameters of a surface, given photographs and geometry.

Previous Work

- Lensch et al., among others: use only direct illumination.
- Yu et al., among others: Use indirect illumination, but use "black-

box" optimization methods and approximations.

Our Approach

 Indirect Illumination, but derivative-based stochastic optimization.

Search Direction

 $\widehat{\delta p} = \left(\widehat{\partial_p R_*}''(p)^T \widehat{\partial_p R_*}''(p)\right)^{-1} \widehat{\partial_p R_*}'(p)^T \left(\overline{R} - \widehat{R_*}(p)\right)$ • Gauss-Newton-Krylov, linear conjugate gradients up to k iterations, variable k

Constraints and Preconditioning

 $\widehat{\delta h} = \left(\widehat{\partial_h R_*}''(h)^T \widehat{\partial_h R_*}''(h)\right)^{-1} \widehat{\partial_h R_*}'(h)^T \left(\bar{R} - \widehat{R_*}(h)\right)$ $p := p(h), \ \widehat{R_*}(h) = \widehat{R_*}(p(h)), \ \widehat{\partial_h R_*}(h) = \widehat{\partial_p R_*}\partial_h p$

Monte-Carlo y(x,p)dxz(p) =Derivative $\widehat{z}(p) := \frac{y(x,p)}{\mathrm{pdf}[x|p]}$ 10 $\partial_p z(p) = \int \partial_p y(x,p) dx$ $\widehat{\partial_p z}(p) := \frac{\partial_p y(x,p)}{\mathrm{pdf}[x|p]}$

biased (ex.: $\widehat{A}(B)$ satisfying

gráfica

www.lcg.ufrj.br

Indicates Jacobian. $\partial_B A(B)$ estimates $\partial_B A(B)$

 R_1

 R_n

Concatenation,

 $R_* =$

ex:

Same BRDF models for generating the target and for fitting

Different BRDF models

 $(\sim 26 \text{ hours})$

Deterministic approximation (~10 minutes)

- Optimization time
- GPU, BPT, MLT
- "Black-Box" rendering
- Choice of pdf for derivatives
- Trust region / step acceptance / line search, Quasi-Newton or Levenberg-Marquardt
- Textures