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Step Acceptance

• Gauss-Newton-Krylov, linear conjugate
gradients up to k iterations, variable k
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surfaces

A rendering of our recovered model, with different camera
position and illumination setting from that of the photograph
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Limitations, Conclu-
sions, Future Work

• Optimization time
• GPU, BPT, MLT
• "Black-Box" rendering
• Choice of pdf for
derivatives
• Trust region / step ac-
ceptance / line search,
Quasi-Newton or
Levenberg-Marquardt
• Textures

Photograph filters

stochastic ray-
tracing renderings
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Pseudorandom estimator
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Independence: 
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Concatenation,
ex:

Indicates Jacobian.
             estimates

Notation

Objective
• Find BRDF parameters of a surface, 
given photographs and geometry.

Previous Work
• Lensch et al., among others: use 
only direct illumination.
• Yu et al., among others: Use indi-
rect illumination, but use "black-
box" optimization methods and ap-
proximations.

Our Approach
• Indirect Illumination, but deriva-
tive-based stochastic optimization.
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