Probabilistic Point Matching M.Sc. Defense

Gustavo T. Pfeiffer Advisors: Ricardo G. Marroquim, Daniel R. Figueiredo

September 14th, 2015

What is *"matching"*?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Image Stitching

・ロト ・四ト ・ヨト ・ヨト

э

(Original images from R. Szeliski, Computer Vision: Algorithms and Applications, 2010.)

Point Cloud Alignment

(日)、

э

(Image from http://dynface4d.isr.uc.pt/images/database/MergePoints1Snap2_a.jpg)

Stereo Reconstruction

(日)

(Images from http://83.157.145.242:8080/projects/stereo/normalisation_tsu.png

and http://www.cs.cornell.edu/People/vnk/recon/gt.gif)

Stereo Calibration

(Images adapted from https://www.youtube.com/watch?v=QzYn0OPO0Yw)

Point Tracking

(日)、(四)、(E)、(E)、(E)

(Image from Shafique, K., Shah, M. (2005). A Noniterative Greedy Algorithm for Multiframe Point Correspondence)

Optical Character Recognition

(Image from Belongie, S., Malik, J., Puzicha, J. (2002): Shape Matching and Object Recognition Using Shape Contexts)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Fingerprint Recognition

(日) (個) (目) (目) (目) (目)

(Image from http://www.barcode.ro/tutorials/biometrics/img/fingermatch.jpg)

Ubiquitous in Computer VisionVaried problems

"Matching"...

Ubiquitous in Computer Vision Varied problems Cannot be tackled all at once!

• Simple probabilistic framework

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Simple **probabilistic framework**

 Provide optimal methods for matching problems

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Our proposal

• Simple probabilistic framework

- Provide optimal methods for matching problems
- Explain fundamental characteristics of matching problems

Our proposal

• Simple **probabilistic framework**

- Provide optimal methods for matching problems
- Explain **fundamental characteristics** of matching problems
- Evaluation in computer vision applications

• Simple probabilistic framework

- Provide optimal methods for matching problems
- Explain **fundamental characteristics** of matching problems
- Evaluation in computer vision applications

• Particularly well-suited to the *feature matching* problem.

Detect, describe and match feature points

・ロト ・ 同ト ・ 日下 ・ 日

(Image from R. Szeliski, Computer Vision: Algorithms and Applications, 2010.)

Detect, describe and match feature points

(Image from R. Szeliski, Computer Vision: Algorithms and Applications, 2010.)

Detect, describe and match feature points

・ロト ・ 同ト ・ 日下 ・ 日

(Image from R. Szeliski, Computer Vision: Algorithms and Applications, 2010.)

Matching feature points: How to?

• Two sets of N points in \mathbb{R}^n (very high n)

• How to match them?

◆ロ▶ ◆昼▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Matching feature points: How to?

• Two sets of N points in \mathbb{R}^n (very high n)

How to match them?

< ロ > < 同 > < 三 >

- Greedy / Heuristics (Cost: $< N^3$)
- Minimum Bipartite Matching (Cost: N³)
- Graph-based (Cost: usually $> N^3$)

Greedy / Heuristics: • e.g.: Select nearest point

 Commonly coupled with the two nearest neighbors (2-NN) strategy.

Minimum bipartite matching:

(日) (同) (日) (日)

• Hungarian algorithm solves in $O(N^3)$

Graph-based methods:

イロト 不得 トイヨト イヨト

э

Our Models

How to study this problem?

(日)

How to study this problem? • Generative model

Direct model

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Direct model

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Direct model

<ロ> (四) (四) (日) (日) (日)

э

Asymmetric model: P_2 has higher variance

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣��

▲ロト ▲圖 ト ▲ ヨト ▲ ヨト ― ヨー のへで

(日)、

э

• Independence assumption

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- N: number of points
- *n*: number of dimensions

- N: number of points
- *n*: number of dimensions
- Generator set distribution:
 - Gaussian case: σ
 - \bullet exponential case: λ
 - power law case: m, α

(日)、

- N: number of points
- *n*: number of dimensions
- Generator set distribution:
 - Gaussian case: σ
 - exponential case: λ
 - power law case: m, α
- Noise distribution:
 - $\bullet\,$ always Gaussian: $\epsilon\,$

(日)、

◆□> ◆□> ◆三> ◆三> ・三 ・ のへの

• How can we "solve" this problem?

<ロト <回ト < 注ト < 注ト

æ

- How can we "solve" this problem?
- In which conditions can the problem be "solved"?

・ロト ・ 一下・ ・ ヨト ・

э

- How can we "solve" this problem?
- In which conditions can the problem be "solved"?

3

イロト イポト イヨト イヨト

Hit count: number of correct matches

- How can we "solve" this problem?
- In which conditions can the problem be "solved"?

◆□> ◆□> ◆豆> ◆豆> □豆

Hit count: number of correct matches

Our Methods

The "max-prob" method

- ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ → □ ● − のへぐ

The "max-prob" method

Choose the most probable permutation:

 $\arg\max_{\Pi} P[\Pi|X_1,X_2]$

(日)、

ㅋ ㅋ

The "max-prob" method

Choose the most probable permutation:

```
\arg\max_{\Pi} P[\Pi|X_1,X_2]
```

Can be solved using the Hungarian algorithm $(O(N^3))$

$$C_{ij} = -\log \mathsf{pdf}[X_1^i, X_2^j | \Pi_{ij}]$$

(日)、

э

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Choose the permutation with the highest expected hit count.

イロト イポト イヨト イヨト

э

Choose the permutation with the highest expected hit count.

$$\arg\max_{\Pi'} E[\Pi':\Pi|X_1,X_2]$$

イロト イポト イヨト イヨト

э

Choose the permutation with the highest expected hit count.

$$\arg\max_{\Pi'} E[\Pi':\Pi|X_1,X_2]$$

• Solved using the Hungarian method $(O(N^3))...$

• ...but building the cost matrix is $O(2^N N^3)$

$$C_{ij} = R_{ij} \operatorname{Per}\left(R_{*ij}
ight), \ R_{ij} = \operatorname{pdf}[X_1^i, X_2^j | \Pi_{ij}]$$

(日)、

-

"max-prob" X "max-expect" $\max_{\Pi} P[\Pi|X_1, X_2]$ $\max_{\Pi'} E[\Pi' : \Pi|X_1, X_2]$ $O(N^3)$ $O(N^3 2^N)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

"max-prob" X "max-expect" $\max_{\Pi} P[\Pi | X_1, X_2]$ $\max_{\Pi'} E[\Pi' : \Pi | X_1, X_2]$ $O(N^3)$ $O(N^3 2^N)$

Maximize different evaluation metrics

- average hit count
- number of cases when #hits = N

"max-prob" X "max-expect" $max_{\Pi} P[\Pi | X_1, X_2]$ $max_{\Pi'} E[\Pi' : \Pi | X_1, X_2]$ $O(N^3)$ $O(N^3 2^N)$

Maximize different evaluation metrics

- average hit count
- number of cases when #hits = N

In practice, not much difference ($\sim 0.01\%)$

Theoretical Results

What happens when $N \to \infty$?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

◆□> ◆□> ◆三> ◆三> ・三 のへの

・ロト ・聞ト ・ヨト ・ヨト

э

Hit rate is decreasing What about the *hit count*?

Hit Count when $N \to \infty$

$$E[\#\mathsf{hits}] = \int_{\mathbb{R}^n} \frac{\mathsf{pdf}[x_1, x_2]}{\mathsf{pdf}[x_2]} dx_1 \bigg|_{x_2 = x_2^*(x_1)}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Hit Count when $N \to \infty$

$$E[\#hits] = \int_{\mathbb{R}^n} \frac{\mathsf{pdf}[x_1, x_2]}{\mathsf{pdf}[x_2]} dx_1 \Big|_{x_2 = x_2^*(x_1)}$$
$$x_2^*(x_1) = ?$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

What happens when $N \to \infty$?

・ロト ・聞ト ・ヨト ・ヨト

æ

"Max-prob" becomes a variational calculus problem as $N \rightarrow \infty$. The solution converges to a Dirac delta:

$$pdf[x_2^*|x_1] = \delta(x_2^* - x_2^*(x_1))$$

・ロト ・聞ト ・ヨト ・ヨト

э

Generator set model with "max-prob" cost function implies identity transformation

$$x_2^* = x_2^*(x_1) = x_1$$

Strong result: applies to any distribution and noise model

Hit Count when $N \to \infty$

$$E[\#\mathsf{hits}] = \int_{\mathbb{R}^n} \frac{\mathsf{pdf}[x_1, x_2]}{\mathsf{pdf}[x_2]} dx_1 \bigg|_{x_2 = x_2^*(x_1)}$$

$$E[\#\mathsf{hits}] = \int_{\mathbb{R}^n} \frac{\mathsf{pdf}[x_1, x_2]}{\mathsf{pdf}[x_2]} dx_1 \bigg|_{x_2 = x_2^*(x_1)}$$

• Gaussian distribution?

$$E[\#\mathsf{hits}] = \int_{\mathbb{R}^n} \frac{\mathsf{pdf}[x_1, x_2]}{\mathsf{pdf}[x_2]} dx_1 \bigg|_{x_2 = x_2^*(x_1)}$$

• Gaussian distribution?

$$\lim_{N\to\infty} E[\#\text{hits}] = (1 + \sigma^2/\epsilon^2)^n$$

$$E[\#\mathsf{hits}] = \int_{\mathbb{R}^n} \frac{\mathsf{pdf}[x_1, x_2]}{\mathsf{pdf}[x_2]} dx_1 \bigg|_{x_2 = x_2^*(x_1)}$$

• Gaussian distribution?

$$\lim_{N\to\infty} E[\#\text{hits}] = (1 + \sigma^2/\epsilon^2)^n$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Exponential distribution

$$E[\#\mathsf{hits}] = \int_{\mathbb{R}^n} \frac{\mathsf{pdf}[x_1, x_2]}{\mathsf{pdf}[x_2]} dx_1 \bigg|_{x_2 = x_2^*(x_1)}$$

• Gaussian distribution?

$$\lim_{N\to\infty} E[\#\text{hits}] = (1 + \sigma^2/\epsilon^2)^n$$

• Exponential distribution

$$\lim_{N\to\infty} E[\#\text{hits}] = +\infty$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?
Hit Count when $N ightarrow \infty$

$$E[\#\mathsf{hits}] = \int_{\mathbb{R}^n} \frac{\mathsf{pdf}[x_1, x_2]}{\mathsf{pdf}[x_2]} dx_1 \bigg|_{x_2 = x_2^*(x_1)}$$

• Gaussian distribution?

$$\lim_{N\to\infty} E[\#\text{hits}] = (1 + \sigma^2/\epsilon^2)^n$$

• Exponential distribution

$$\lim_{N\to\infty} E[\#\text{hits}] = +\infty$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Power-law distribution

Hit Count when $N ightarrow \infty$

$$E[\#\mathsf{hits}] = \int_{\mathbb{R}^n} \frac{\mathsf{pdf}[x_1, x_2]}{\mathsf{pdf}[x_2]} dx_1 \bigg|_{x_2 = x_2^*(x_1)}$$

• Gaussian distribution?

$$\lim_{N\to\infty} E[\#\text{hits}] = (1 + \sigma^2/\epsilon^2)^n$$

• Exponential distribution

$$\lim_{N\to\infty} E[\#\text{hits}] = +\infty$$

• Power-law distribution

$$\lim_{N\to\infty} E[\#\text{hits}] = +\infty$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Hit Count when $N \rightarrow \infty$

Gaussian

Exponential

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Method: Restrict to points with high hit probability
 - Region with low point density

(日)、

-

- Method: Restrict to points with high hit probability
 - Region with low point density

- Method: Restrict to points with high hit probability
 - Region with low point density

- Method: Restrict to points with high hit probability
 - Region with low point density

Power law:

 $E[\#hits] = \Omega(N^{n/\alpha})$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Power law:

$$E[\# \mathsf{hits}] = \Omega(N^{n/lpha})$$

• Exponential:

$$E[\#hits] = \Omega((\log N)^{n-1})$$
 (loose bound)

- Increasing N reduces hit rate
- Reducing noise (ϵ) increases hit rate

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• What is the tradeoff?

- Increasing N reduces hit rate
- Reducing noise (ϵ) increases hit rate
- What is the tradeoff?

- Increasing N reduces hit rate
- Reducing noise (ϵ) increases hit rate
- What is the tradeoff?

- Increasing N reduces hit rate
- Reducing noise (ϵ) increases hit rate
- What is the tradeoff?

- Increasing N reduces hit rate
- Reducing noise (ϵ) increases hit rate
- What is the tradeoff?

Condition for Minimum Hit Rate

• $\epsilon^n < C/N \Rightarrow E[\#hits] \gtrsim \bar{Q}N$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Condition for Minimum Hit Rate

• $\epsilon^n < C/N \Rightarrow E[\#\text{hits}] \gtrsim \bar{Q}N$ • $\epsilon^n = o(1/N) \Rightarrow E[\#\text{hits}] \sim N$

Condition for Minimum Hit Rate

- $\epsilon^n < C/N \Rightarrow E[\#hits] \gtrsim \bar{Q}N$
- $\epsilon^n = o(1/N) \Rightarrow E[\#hits] \sim N$
- Applies to distributions satisfying max_x pdf[x] < +∞.

Hitting all Pairs

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Hitting all Pairs

Similar result:

$$\epsilon^n < C/N^2 \Rightarrow P[\#hits = N] \gtrsim \overline{Q}$$

 $\epsilon^n = o(1/N^2) \Rightarrow P[\#hits = N] \sim 1$

Similar result:

$$\epsilon^n < C/N^2 \Rightarrow P[\#hits = N] \gtrsim \overline{Q}$$

 $\epsilon^n = o(1/N^2) \Rightarrow P[\#hits = N] \sim 1$

What is the difference?

•
$$\epsilon^n = o(1/N) \Rightarrow E[\#hits] \sim N$$

• $\epsilon^n = o(1/N^2) \Rightarrow P[\#hits = N] \sim 1$

What happens between $\epsilon^n = o(1/N)$ and $\epsilon^n = \omega(1/N^2)$?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Similar result:

$$\epsilon^n < C/N^2 \Rightarrow P[\#hits = N] \gtrsim \overline{Q}$$

 $\epsilon^n = o(1/N^2) \Rightarrow P[\#hits = N] \sim 1$

What is the difference?

•
$$\epsilon^n = o(1/N) \Rightarrow E[\#hits] \sim N$$

• $\epsilon^n = o(1/N^2) \Rightarrow P[\#hits = N] \sim 1$

What happens between $\epsilon^n = o(1/N)$ and $\epsilon^n = \omega(1/N^2)$?

- The miss count is o(N) but $\omega(1)$
- So $E[\#hits] \sim N$ but $P[\#hits = N] \rightarrow 0$.

Application

Instantiation in feature matching

- Models for Harris/NCC and RootSIFT features
- Evaluation using Mikolajczyk's dataset

Mikolajczyk's Dataset

(a) graf-1

(c) graf-3

(f) graf-6

(x) trees-6

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Issues with real world data:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Issues with real world data:

- Sets of different sizes (N₁, N₂)
- Outliers (points without matches)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Issues with real world data:

- Sets of different sizes (N₁, N₂)
- Outliers (points without matches)

Adaptation:

• Generator set has $\max\{N_1, N_2\}$ points, one of the sets has $|N_2 - N_1|$ points occluded;

Issues with real world data:

- Sets of different sizes (N₁, N₂)
- Outliers (points without matches)

Adaptation:

 Generator set has max{N₁, N₂} points, one of the sets has |N₂ - N₁| points occluded;

Issues with real world data:

- Sets of different sizes (N₁, N₂)
- Outliers (points without matches)

Adaptation:

 Generator set has max{N₁, N₂} points, one of the sets has |N₂ - N₁| points occluded;

Issues with real world data:

- Sets of different sizes (N₁, N₂)
- Outliers (points without matches)

Adaptation:

 Generator set has max{N₁, N₂} points, one of the sets has |N₂ - N₁| points occluded;

Issues with real world data:

- Sets of different sizes (N₁, N₂)
- Outliers (points without matches)

Adaptation:

- Generator set has max{N₁, N₂} points, one of the sets has |N₂ - N₁| points occluded;
- In addition: Probability *q* of point becoming outlier (point is generated again)

Issues with real world data:

- Sets of different sizes (N₁, N₂)
- Outliers (points without matches)

Adaptation:

- Generator set has max{N₁, N₂} points, one of the sets has |N₂ - N₁| points occluded;
- In addition: Probability *q* of point becoming outlier (point is generated again)

Issues with real world data:

- Sets of different sizes (N₁, N₂)
- Outliers (points without matches)

Adaptation:

- Generator set has max{N₁, N₂} points, one of the sets has |N₂ - N₁| points occluded;
- In addition: Probability *q* of point becoming outlier (point is generated again)

Issues with real world data:

- Sets of different sizes (N₁, N₂)
- Outliers (points without matches)

Adaptation:

- Generator set has max{N₁, N₂} points, one of the sets has |N₂ - N₁| points occluded;
- In addition: Probability *q* of point becoming outlier (point is generated again)

Issues with real world data:

- Sets of different sizes (N₁, N₂)
- Outliers (points without matches)

Adaptation:

- Generator set has $\max\{N_1, N_2\}$ points, one of the sets has $|N_2 N_1|$ points occluded;
- In addition: Probability *q* of point becoming outlier (point is generated again)

Analogous algorithms
Harris/NCC and RootSIFT features

Harris/NCC

SIFT

- NCC descriptors have zero mean and unitary L2 norm
- SIFT descriptor has positive entries (histogram-like)
 - After RootSIFT normalization: unitary L2 norm

Harris/NCC and RootSIFT features

 $\mathsf{Harris}/\mathsf{NCC}$

SIFT

- NCC descriptors have zero mean and unitary L2 norm
- SIFT descriptor has positive entries (histogram-like)
 - After RootSIFT normalization: unitary L2 norm

Gaussian model is not appropriate!

Harris/NCC and RootSIFT models

Our model:

- Gaussian variables
- But normalized to satisfy zero mean (Harris/NCC case only) and unitary norm

Harris/NCC and RootSIFT models

Allows anisotropic distributions

Harris/NCC and RootSIFT models

Allows anisotropic distributions Efficient MLE method is provided

• Estimates a covariance matrix C

$$\mathsf{pdf}[x] \propto \frac{1}{(x^T C^{-1} x)^{n/2}}$$

Feeds MLE with the input sets of the matching problem

Evaluation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Evaluation

$\mathsf{Harris}/\mathsf{NCC}$

- Greedy method
- MBM with L2 distance
- MBM with squared L2 distance
- Gaussian model
- Harris/NCC model (isotropic)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Evaluation

$\mathsf{Harris}/\mathsf{NCC}$

- Greedy method
- MBM with L2 distance
- MBM with squared L2 distance
- Gaussian model
- Harris/NCC model (isotropic)

RootSIFT

- Greedy method
- MBM with L2 distance
- MBM with squared L2 distance
- Gaussian model
- isotropic RootSIFT model
- anisotropic RootSIFT model

 hybrid RootSIFT model (anisotropic G.S. and isotropic noise)

- Parameters of our methods:
 - Outlier rate $q \in]0,1[$
 - Noise/signal rate $\chi \in]0,1[$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Parameters of our methods:
 - Outlier rate $q \in]0,1[\rightarrow (not required in practice)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Noise/signal rate $\chi \in]0,1[$

- Parameters of our methods:
 - Outlier rate $q \in]0,1[\rightarrow (not required in practice)$

- Noise/signal rate $\chi \in]0,1[$
- The other methods require no parameters

- Parameters of our methods:
 - Outlier rate $q \in]0,1[\rightarrow (not required in practice)$
 - Noise/signal rate $\chi \in]0,1[$
- The other methods require no parameters
- Methodology: Vary $\chi \in \{.02, .04, ..., .98\}$ and analyze the **median** and **maximum** hit counts

Harris/NCC

- Greedy method
- MBM with L2 distance
- MBM with squared L2 distance
- Gaussian model
- Harris/NCC model (isotropic)

RootSIFT

- Greedy method
- MBM with L2 distance
- MBM with squared L2 distance
- Gaussian model
- isotropic RootSIFT model
- anisotropic RootSIFT model

 hybrid RootSIFT model (anisotropic G.S. and isotropic noise)

Selected findings

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 Among our methods, the Harris/NCC model (isotropic) and the hybrid RootSIFT model had the best results;

Selected findings

$\mathsf{Harris}/\mathsf{NCC}$

- Greedy method
- MBM with L2 distance
- MBM with squared L2 distance
- Gaussian model
- Harris/NCC model (isotropic)

RootSIFT

- Greedy method
- MBM with L2 distance
- MBM with squared L2 distance
- Gaussian model
- isotropic RootSIFT model
- anisotropic RootSIFT model
- hybrid RootSIFT model (anisotropic G.S. and isotropic noise)

 Among our methods, the Harris/NCC model (isotropic) and the hybrid RootSIFT model had the best results;

- Among our methods, the Harris/NCC model (isotropic) and the hybrid RootSIFT model had the best results;
- The *maximum* hit count of our methods was better than the other (non-parametric) methods, but the *median* was worse;

Selected findings

$\mathsf{Harris}/\mathsf{NCC}$

- Greedy method
- MBM with L2 distance
- MBM with squared L2 distance
- Gaussian model
- Harris/NCC model (isotropic)

RootSIFT

- Greedy method
- MBM with L2 distance
- MBM with squared L2 distance
- Gaussian model
- isotropic RootSIFT model
- anisotropic RootSIFT model
- hybrid RootSIFT model (anisotropic G.S. and isotropic noise)

Selected findings

$\mathsf{Harris}/\mathsf{NCC}$

- Greedy method
- MBM with L2 distance
- MBM with squared L2 distance

RootSIFT

- Greedy method
- MBM with L2 distance
- MBM with squared L2 distance
- Gaussian model
- isotropic RootSIFT model
 inisotropic RootSIFT model
 iybrid RootSIFT model
 anisotropic G.S. and
 sotropic noise)

- Among our methods, the Harris/NCC model (isotropic) and the hybrid RootSIFT model had the best results;
- The *maximum* hit count of our methods was better than the other (non-parametric) methods, but the *median* was worse;

- Among our methods, the Harris/NCC model (isotropic) and the hybrid RootSIFT model had the best results;
- The *maximum* hit count of our methods was better than the other (non-parametric) methods, but the *median* was worse;

 $\bullet\,$ The difference in hit count between the methods is minute ($\sim 1\%)$

case	#features	G2	E2	E1	GA	HN
graf1-2	478 imes488	128	137	148	152 137	152 137
graf1-3	478 imes483	71	69	70	71 63	71 66
graf1-4	478 imes 482	10	10	10	11 8	11 8
graf1-5	478 imes484	22	31	30	33 27	31 28
graf1-6	478 imes468	7	8	6	10 4	9 7
bikes1-2	483 imes495	329	338	344	343 338	343 339
bikes1-3	483 imes489	301	308	311	310 308	313 311
bikes1-4	483 imes 489	221	230	236	235 229	236 232
bikes1-5	483 imes485	143	149	155	157 144	163 149
bikes1-6	483 imes 482	67	80	76	83 76	86 77
wall1-2	480 imes 490	337	334	336	337 331	337 334
wall1-3	480 imes 483	298	297	297	301 281	300 292
wall1-4	480 imes478	194	192	194	195 170	195 185
wall1-5	480 imes487	113	121	128	127 83	125 106
wall1-6	480 imes 492	34	41	42	42 17	42 23
trees1-2	487 imes 482	210	206	207	208 199	209 206
trees1-3	487 imes488	168	167	168	167 164	169 166
trees1-4	487 imes489	74	76	77	77 73	77 74
trees1-5	487 imes475	44	47	45	49 45	48 45
trees1-6	487 imes486	15	18	17	19 16	21 17
	bold count	7	6	11	133	15 20

Table : Hit count comparison for Harris/NCC features

case	#features	G2	E2	E1	GA	HN
graf1-2	478 × 488	128	137	148	152 137	152 137
graf1-3	478×483	71	69	70	71 63	71 66
graf1-4	478×482	10	10	10	11 8	11 8
graf1-5	478 imes 484	22	31	30	33 27	31 28
graf1-6	478 imes 468	7	8	6	10 4	9 7
bikes1-2	483 imes495	329	338	344	343 338	343 339
bikes1-3	483 imes 489	301	308	311	310 308	313 311
bikes1-4	483 imes 489	221	230	236	235 229	236 232
bikes1-5	483 imes 485	143	149	155	157 144	163 149
bikes1-6	483 imes 482	67	80	76	83 76	86 77
wall1-2	480 imes 490	337	334	336	337 331	337 334
wall1-3	480 imes 483	298	297	297	301 281	300 292
wall1-4	480 imes 478	194	192	194	195 170	195 185
wall1-5	480 imes 487	113	121	128	127 83	125 106
wall1-6	480 imes 492	34	41	42	42 17	42 23
trees1-2	487 imes 482	210	206	207	208 199	209 206
trees1-3	487 imes 488	168	167	168	167 164	169 166
trees1-4	487 imes489	74	76	77	77 73	77 74
trees1-5	487 imes 475	44	47	45	49 45	48 45
trees1-6	487 imes 486	15	18	17	19 16	21 17
	bold count	7	6	11	133	15 20

Table : Hit count comparison for Harris/NCC features

	//feeturee	G2	E2	E1	GA	П	AI	AA
case	#features							
G1-2	636 imes 742	341	338	338	338 338	339 338	339 338	338 337
G1-3	636 imes 885	211	207	206	212 207	212 207	213 209	210 203
G1-4	636 imes 909	76	74	76	79 74	80 75	79 74	75 73
G1-5	636 imes1009	19	19	19	19 19	19 19	21 18	15 13
G1-6	636 imes 1120	7	7	8	77	8 7	9 7	66
B1-2	653 imes 428	310	313	313	313 313	314 313	313 312	314 314
B1-3	653 imes 268	206	206	206	206 206	206 206	206 206	206 206
B1-4	653 imes 143	105	105	105	105 105	105 105	105 105	105 105
B1-5	653 imes 102	68	68	68	68 68	68 68	68 68	68 68
B1-6	653 imes 68	50	49	50	50 49	50 49	50 50	50 50
W-2	514 imes 650	288	286	286	286 286	287 286	288 286	286 285
W1-3	514 imes 635	215	214	215	215 214	215 215	215 215	214 214
W1-4	514 imes 612	136	135	137	137 135	137 136	137 136	137 136
W1-5	514 imes 657	90	83	83	90 83	90 84	90 84	89 83
W1-6	514 imes 629	19	19	19	20 19	20 19	22 19	17 16
T1-2	797 imes 742	289	287	287	289 287	289 287	289 287	290 287
T1-3	797 imes 934	297	297	300	298 297	300 297	300 299	297 295
T1-4	797×700	192	188	188	195 188	194 188	195 188	195 188
T1-5	797×361	103	101	100	102 101	103 101	103 102	102 101
T1-6	797×227	60	61	61	61 61	61 61	61 61	62 62
	bold count	15	7	13	8 10	12 14	16 16	99

Table : Hit count comparison for RootSIFT features.

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	case #features
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	G1-2 636 × 742
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	B1-2 653×428
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	B1-3 653 × 268
B1-6 653 × 68 50 49 50 50 49 50 49 50 50 50 50 50 50 50 50 50 50	B1-4 653×143
	B1-5 653 × 102
W-2 514×650 288 286 286 286 286 287 286 288 286 286 288	
W1-3 514 \times 635 215 214 215 215 214 215 215 215 215 215 214 214	
W1-4 514 \times 612 136 135 137 137 135 137 136 137 136 137 136	
W1-5 514 \times 657 90 83 83 90 83 90 84 90 84 89 83	W1-5 514 × 657
W1-6 514 \times 629 19 19 19 20 19 20 19 22 19 17 16	
T1-2 797 × 742 289 287 287 289 287 289 287 289 287 289 287 290 287	T1-2 797 × 742
T1-3 797 \times 934 297 297 300 298 297 300 297 300 299 297 295	T1-3 797 × 934
T1-4 797 × 700 192 188 188 195 188 194 188 195 188 195 188	T1-4 797 × 700
T1-5 797 \times 361 103 101 100 102 101 103 101 103 102 102 101	T1-5 797 × 361
T1-6 797 \times 227 60 61 61 61 61 61 61 61 61 62 62	T1-6 797 × 227
bold count 15 7 13 8 10 12 14 16 16 9 9	bold count

Table : Hit count comparison for RootSIFT features.

- Among our methods, the Harris/NCC model (isotropic) and the hybrid RootSIFT model had the best results;
- The *maximum* hit count of our methods was better than the other (non-parametric) methods, but the *median* was worse;

• The difference in hit count between the methods is minute ($\sim 1\%)$

- Among our methods, the Harris/NCC model (isotropic) and the hybrid RootSIFT model had the best results;
- The *maximum* hit count of our methods was better than the other (non-parametric) methods, but the *median* was worse;
- The difference in hit count between the methods is minute ($\sim 1\%)$
 - No significant improvement for the final application

- Among our methods, the Harris/NCC model (isotropic) and the hybrid RootSIFT model had the best results;
- The *maximum* hit count of our methods was better than the other (non-parametric) methods, but the *median* was worse;
- The difference in hit count between the methods is minute ($\sim 1\%)$
 - No significant improvement for the final application

• Greedy algorithm is already very good for feature matching

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• A probabilistic framework for matching problems

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• A probabilistic framework for matching problems

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Optimal methods

• A probabilistic framework for matching problems

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Optimal methods
- Asymptotic properties

- A probabilistic framework for matching problems
- Optimal methods
- Asymptotic properties
 - Tradeoff between noise and number of points

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- A probabilistic framework for matching problems
- Optimal methods
- Asymptotic properties
 - Tradeoff between noise and number of points

• Instantiation in feature matching

- A probabilistic framework for matching problems
- Optimal methods
- Asymptotic properties
 - Tradeoff between noise and number of points

- Instantiation in feature matching
 - Not better than the state-of-art

- A probabilistic framework for matching problems
- Optimal methods
- Asymptotic properties
 - Tradeoff between noise and number of points

- Instantiation in feature matching
 - Not better than the state-of-art
 - But not worse either!

- A probabilistic framework for matching problems
- Optimal methods
- Asymptotic properties
 - Tradeoff between noise and number of points

- Instantiation in feature matching
 - Not better than the state-of-art
 - But not worse either!
 - Possibly due to high dimensionality

Future Work

• Other applications, possibly out of Computer Vision

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Other applications, possibly out of Computer Vision

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Models for correlated noise (e.g.: bias)

Future Work

- Other applications, possibly out of Computer Vision
- Models for correlated noise (e.g.: bias)
 - May better explain other matching problems such as *point set registration*

- Other applications, possibly out of Computer Vision
- Models for correlated noise (e.g.: bias)
 - May better explain other matching problems such as *point set registration*

(Image from http://dynface4d.isr.uc.pt/images/database/MergePoints1Snap2_a.jpg)

Future Work

- Other applications, possibly out of Computer Vision
- Models for correlated noise (e.g.: bias)
 - May better explain other matching problems such as *point set registration*

- Other applications, possibly out of Computer Vision
- Models for correlated noise (e.g.: bias)
 - May better explain other matching problems such as *point set registration*

• Analysis of methods that detect outliers (e.g.: 2-NN)

- Other applications, possibly out of Computer Vision
- Models for correlated noise (e.g.: bias)
 - May better explain other matching problems such as *point set registration*

- Analysis of methods that detect outliers (e.g.: 2-NN)
- Upper bounds

Thank you for your attention!

Questions?