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What is “matching”?



Image Stitching

(Original images from R. Szeliski, Computer Vision: Algorithms and Applications, 2010.)



Point Cloud Alignment

(Image from http://dynface4d.isr.uc.pt/images/database/MergePoints1Snap2 a.jpg)



Stereo Reconstruction

(Images from http://83.157.145.242:8080/projects/stereo/normalisation tsu.png

and http://www.cs.cornell.edu/People/vnk/recon/gt.gif )



Stereo Calibration

(Images adapted from https://www.youtube.com/watch?v=QzYn0OPO0Yw)



Point Tracking

(Image from Shafique, K., Shah, M. (2005). A Noniterative Greedy Algorithm for Multiframe Point Correspondence)



Optical Character Recognition

(Image from Belongie, S., Malik, J., Puzicha, J. (2002): Shape Matching and Object Recognition Using Shape Contexts)



Fingerprint Recognition

(Image from http://www.barcode.ro/tutorials/biometrics/img/fingermatch.jpg)



“Matching”...

Ubiquitous in Computer Vision
Varied problems

Cannot be tackled all at once!
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Our proposal

Simple probabilistic framework

Provide optimal methods for matching
problems
Explain fundamental characteristics of
matching problems
Evaluation in computer vision applications

Particularly well-suited to the feature
matching problem.
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The feature matching approach

Detect, describe and match feature points

(Image from R. Szeliski, Computer Vision: Algorithms and Applications, 2010.)
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Matching feature points: How to?

Two sets of N points in Rn (very high n)
How to match them?
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Matching Strategies

Greedy / Heuristics (Cost: < N3)

Minimum Bipartite Matching (Cost: N3)

Graph-based (Cost: usually > N3)



Matching Strategies

Greedy / Heuristics:
e.g.: Select nearest point

Commonly coupled with the two nearest
neighbors (2-NN) strategy.



Matching Strategies

Minimum bipartite matching:

Hungarian algorithm solves in O(N3)



Matching Strategies

Graph-based methods:



Our Models



How to study this problem?

Generative model
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Parameters

N : number of points
n: number of dimensions

Generator set distribution:

Gaussian case: σ (pdf[x ] ∝ e−
1
2
||x ||2/σ2

)
exponential case: λ (pdf[x ] ∝ e−λ||x ||)
power law case: m, α (pdf[x ] ∝ ||x ||−α)

Noise distribution:

always Gaussian: ε
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How can we “solve” this problem?
In which conditions can the problem be “solved”?

Hit count: number of correct matches
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Our Methods



The “max-prob” method

Choose the most probable permutation:

arg max
Π

P[Π|X1,X2]

Can be solved using the Hungarian algorithm (O(N3))

Cij = − log pdf[X i
1,X

j
2|Πij ]
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The “max-expect” method

Choose the permutation with the highest expected hit count.

arg max
Π′

E [Π′ : Π|X1,X2]

Solved using the Hungarian method (O(N3))...

...but building the cost matrix is O(2NN3)

Cij = Rij Per (R∗ij ) , Rij = pdf[X i
1,X

j
2|Πij ]



The “max-expect” method

Choose the permutation with the highest expected hit count.

arg max
Π′

E [Π′ : Π|X1,X2]

Solved using the Hungarian method (O(N3))...

...but building the cost matrix is O(2NN3)

Cij = Rij Per (R∗ij ) , Rij = pdf[X i
1,X

j
2|Πij ]



The “max-expect” method

Choose the permutation with the highest expected hit count.

arg max
Π′

E [Π′ : Π|X1,X2]

Solved using the Hungarian method (O(N3))...

...but building the cost matrix is O(2NN3)

Cij = Rij Per (R∗ij ) , Rij = pdf[X i
1,X

j
2|Πij ]



The “max-expect” method

Choose the permutation with the highest expected hit count.

arg max
Π′

E [Π′ : Π|X1,X2]

Solved using the Hungarian method (O(N3))...

...but building the cost matrix is O(2NN3)

Cij = Rij Per (R∗ij ) , Rij = pdf[X i
1,X

j
2|Πij ]



“max-prob” X “max-expect”
maxΠ P[Π|X1,X2] maxΠ′ E [Π′ : Π|X1,X2]

O(N3) O(N32N)

Maximize different evaluation metrics

average hit count

number of cases when #hits = N

In practice, not much difference (∼ 0.01%)
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Theoretical Results



What happens when N →∞?
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What happens when N →∞?

Hit rate is decreasing
What about the hit count?



Hit Count when N →∞

E [#hits] =

∫
Rn

pdf[x1, x2]

pdf[x2]
dx1

∣∣∣∣
x2=x∗2 (x1)
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What happens when N →∞?

“max-prob” Greedy method

(Direct model)

“Max-prob” becomes a variational calculus problem as
N →∞. The solution converges to a Dirac delta:

pdf[x∗2 |x1] = δ(x∗2 − x∗2 (x1))
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(Direct model)

“Max-prob” becomes a variational calculus problem as
N →∞. The solution converges to a Dirac delta:

pdf[x∗2 |x1] = δ(x∗2 − x∗2 (x1))



What happens when N →∞?

Generator set model with “max-prob” cost function implies
identity transformation

x∗2 = x∗2 (x1) = x1

Strong result: applies to any distribution and noise model
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Hit Count when N →∞

Gaussian Exponential



Asymptotic Hit Count: Lower Bound

Method: Restrict to points with high hit probability

Region with low point density
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Asymptotic Hit Count: Lower Bound

Power law:
E [#hits] = Ω(Nn/α)

Exponential:

E [#hits] = Ω((logN)n−1) (loose bound)
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What is the tradeoff?
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Condition for Minimum Hit Rate

εn < C/N ⇒ E [#hits] & Q̄N

εn = o(1/N)⇒ E [#hits] ∼ N
Applies to distributions satisfying
maxx pdf[x ] < +∞.
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Hitting all Pairs

Similar result:

εn < C/N2 ⇒ P[#hits = N] & Q̄

εn = o(1/N2)⇒ P[#hits = N] ∼ 1

What is the difference?

εn = o(1/N)⇒ E [#hits] ∼ N

εn = o(1/N2)⇒ P[#hits = N] ∼ 1

What happens between εn = o(1/N) and εn = ω(1/N2)?

The miss count is o(N) but ω(1)

So E [#hits] ∼ N but P[#hits = N]→ 0.



Hitting all Pairs

Similar result:

εn < C/N2 ⇒ P[#hits = N] & Q̄

εn = o(1/N2)⇒ P[#hits = N] ∼ 1

What is the difference?

εn = o(1/N)⇒ E [#hits] ∼ N

εn = o(1/N2)⇒ P[#hits = N] ∼ 1

What happens between εn = o(1/N) and εn = ω(1/N2)?

The miss count is o(N) but ω(1)

So E [#hits] ∼ N but P[#hits = N]→ 0.



Hitting all Pairs

Similar result:

εn < C/N2 ⇒ P[#hits = N] & Q̄

εn = o(1/N2)⇒ P[#hits = N] ∼ 1

What is the difference?

εn = o(1/N)⇒ E [#hits] ∼ N

εn = o(1/N2)⇒ P[#hits = N] ∼ 1

What happens between εn = o(1/N) and εn = ω(1/N2)?

The miss count is o(N) but ω(1)

So E [#hits] ∼ N but P[#hits = N]→ 0.



Hitting all Pairs

Similar result:

εn < C/N2 ⇒ P[#hits = N] & Q̄

εn = o(1/N2)⇒ P[#hits = N] ∼ 1

What is the difference?

εn = o(1/N)⇒ E [#hits] ∼ N

εn = o(1/N2)⇒ P[#hits = N] ∼ 1

What happens between εn = o(1/N) and εn = ω(1/N2)?

The miss count is o(N) but ω(1)

So E [#hits] ∼ N but P[#hits = N]→ 0.



Application



Overview

Instantiation in feature matching

Models for Harris/NCC and RootSIFT features

Evaluation using Mikolajczyk’s dataset



Mikolajczyk’s Dataset



Instantiating “max-prob”...

Issues with real world data:

Sets of different sizes (N1,N2)

Outliers (points without matches)

Adaptation:
Generator set has max{N1,N2} points, one of the sets
has |N2 − N1| points occluded;

In addition: Probability q of point becoming outlier
(point is generated again)

Analogous algorithms
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Harris/NCC and RootSIFT features

Harris/NCC SIFT

NCC descriptors have zero mean and unitary L2 norm

SIFT descriptor has positive entries (histogram-like)

After RootSIFT normalization: unitary L2 norm

Gaussian model is not appropriate!
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Harris/NCC and RootSIFT models

Our model:
Gaussian variables
But normalized to satisfy zero mean (Harris/NCC case only)
and unitary norm



Harris/NCC and RootSIFT models

Allows anisotropic distributions

Efficient MLE method is provided

Estimates a covariance matrix C

pdf[x ] ∝ 1

(xTC−1x)n/2

Feeds MLE with the input sets of the matching problem
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Methodology

Parameters of our methods:

Outlier rate q ∈]0, 1[

→ (not required in practice)

Noise/signal rate χ ∈]0, 1[

The other methods require no parameters

Methodology: Vary χ ∈ {.02, .04, ..., .98} and analyze the
median and maximum hit counts
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Selected findings

Among our methods, the Harris/NCC model (isotropic)
and the hybrid RootSIFT model had the best results;

The maximum hit count of our methods was better than
the other (non-parametric) methods, but the median was
worse;

The difference in hit count between the methods is
minute (∼ 1%)

No significant improvement for the final application
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Table : Hit count comparison for Harris/NCC features

case #features G2 E2 E1 GA HN

graf1-2 478× 488 128 137 148 152|137 152|137
graf1-3 478× 483 71 69 70 71|63 71|66
graf1-4 478× 482 10 10 10 11|8 11|8
graf1-5 478× 484 22 31 30 33|27 31|28
graf1-6 478× 468 7 8 6 10|4 9|7
bikes1-2 483× 495 329 338 344 343|338 343|339
bikes1-3 483× 489 301 308 311 310|308 313|311
bikes1-4 483× 489 221 230 236 235|229 236|232
bikes1-5 483× 485 143 149 155 157|144 163|149
bikes1-6 483× 482 67 80 76 83|76 86|77
wall1-2 480× 490 337 334 336 337|331 337|334
wall1-3 480× 483 298 297 297 301|281 300|292
wall1-4 480× 478 194 192 194 195|170 195|185
wall1-5 480× 487 113 121 128 127|83 125|106
wall1-6 480× 492 34 41 42 42|17 42|23
trees1-2 487× 482 210 206 207 208|199 209|206
trees1-3 487× 488 168 167 168 167|164 169|166
trees1-4 487× 489 74 76 77 77|73 77|74
trees1-5 487× 475 44 47 45 49|45 48|45
trees1-6 487× 486 15 18 17 19|16 21|17

bold count 7 6 11 13|3 15|20
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Table : Hit count comparison for RootSIFT features.

case #features G2 E2 E1 GA II AI AA

G1-2 636× 742 341 338 338 338|338 339|338 339|338 338|337
G1-3 636× 885 211 207 206 212|207 212|207 213|209 210|203
G1-4 636× 909 76 74 76 79|74 80|75 79|74 75|73
G1-5 636× 1009 19 19 19 19|19 19|19 21|18 15|13
G1-6 636× 1120 7 7 8 7|7 8|7 9|7 6|6
B1-2 653× 428 310 313 313 313|313 314|313 313|312 314|314
B1-3 653× 268 206 206 206 206|206 206|206 206|206 206|206
B1-4 653× 143 105 105 105 105|105 105|105 105|105 105|105
B1-5 653× 102 68 68 68 68|68 68|68 68|68 68|68
B1-6 653× 68 50 49 50 50|49 50|49 50|50 50|50
W-2 514× 650 288 286 286 286|286 287|286 288|286 286|285

W1-3 514× 635 215 214 215 215|214 215|215 215|215 214|214
W1-4 514× 612 136 135 137 137|135 137|136 137|136 137|136
W1-5 514× 657 90 83 83 90|83 90|84 90|84 89|83
W1-6 514× 629 19 19 19 20|19 20|19 22|19 17|16
T1-2 797× 742 289 287 287 289|287 289|287 289|287 290|287
T1-3 797× 934 297 297 300 298|297 300|297 300|299 297|295
T1-4 797× 700 192 188 188 195|188 194|188 195|188 195|188
T1-5 797× 361 103 101 100 102|101 103|101 103|102 102|101
T1-6 797× 227 60 61 61 61|61 61|61 61|61 62|62

bold count 15 7 13 8|10 12|14 16|16 9|9
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Selected findings

Among our methods, the Harris/NCC model (isotropic)
and the hybrid RootSIFT model had the best results;

The maximum hit count of our methods was better than
the other (non-parametric) methods, but the median was
worse;

The difference in hit count between the methods is
minute (∼ 1%)

No significant improvement for the final application
Greedy algorithm is already very good for feature
matching
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Tradeoff between noise and number of points

Instantiation in feature matching
Not better than the state-of-art

But not worse either!

Possibly due to high dimensionality
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Other applications, possibly out of Computer Vision

Models for correlated noise (e.g.: bias)

May better explain other matching problems such as
point set registration

Analysis of methods that detect outliers (e.g.: 2-NN)

Upper bounds
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Thank you for your
attention!

Questions?


